Összes szerző


Fekete Zoltán

az alábbi absztraktok szerzői között szerepel:

Madarász Miklós
Transparent neural interfaces for simultaneous Ca2+ imaging and cortical electrophysiology in vivo

Aug 30 - szerda

11:45 – 12:00

Bioszenzorika és bio-nanotechnológia

E29

Transparent neural interfaces for simultaneous Ca2+ imaging and cortical electrophysiology in vivo

Miklós Madarász1, Ágnes Szabó2, Flóra Zsófia Fedor1, Zsófia Lantos2, Anita Zátonyi2, Vindhya Danda3, Lisa Spurgin3, Connie Manz3, Róbert Hodovári2, Tibor Lőrincz1, Balázs Rózsa1 and Zoltán Fekete2

1 BrainVisionCenter Nonprofit Kft., Budapest, Hungary

2 Pázmány Péter Catholic University, Faculty of Information Technology and Bionics

3 Qualia Labs Inc., Dallas, TX, USA

Multimodal electrophysiological and neuroimaging approaches hold great potential for revealing the anatomical and functional connectivity of neuronal ensembles in the intact brain. Creating devices that provide high-resolution, artifact free neural recordings while facilitating the interrogation or stimulation of underlying anatomical features is currently one of the greatest challenges in the field of neuroengineering. Optically transparent micro – electrocorticography devices enable the simultaneous recording of brain activity with electrocorticography and fluorescent Ca2+ signals with two-photon imaging. There are numerous trade-offs in the design and development of transparent neural interfaces, in the electrical, optical, and mechanical properties, the stability and longevity of the integrated features and biocompatibility in vivo. We present transparent devices designed for chronic, multimodal interrogation of brain circuits and demonstrate in vivo viability through long term implantation [1-3]. We characterise the electrochemical and mechanical properties, photoartefacts and photodegradation of the materials and show that single neurons remained active and distinctive even 22 weeks after implantation. Simultaneous examination of neural networks through transparent ECoG devices provides an opportunity to better understand the physiological and pathological states of experimental animals and guide the application of these devices toward future human disease diagnostics and medication.

References

[1] Szabó Á, Madarász M, Lantos Z, Zátonyi A, Danda V, Spurgin L, Manz C, Rózsa B, Fekete Z (2022) Adv Mater Interfaces2022, 9, 2200729.

[2] Fedor FZ, Madarász M, Zátonyi A, Szabó A, Lőrincz T, Danda V, Spurgin L, Manz C, Rózsa B, Fekete Z. (2022) Adv Mater Technol 2022, 7, 2100942.

[3] Zátonyi A, Madarász M, Szabó Á, Lőrincz T, Hodovári R, Rózsa B, Fekete Z (2020) J. Neural Eng. 17 016062.